Mission Data Systent (MDS)

State Knowledge Representation
in the Mission Data System

Daniel Dvorak and Robert Rasmussen
Jet Propulsion Laboratory
California Institute of Technology

09/24/2001 DLD -1

JPL

State Architecture

State variables provide
access to state knowledge

Estimators interpret evidence
to estimate state

Telecommand

Controllers issue commands
.| striving to achieve goals
*
R

Proxies

imy -

Hardware proxies provide
access to hardware busses,

devices, instruments
09/24/2001

[

Next: Control system pattern

DLD -2

Mission Data System (MDS)
),.:;,:J SRy, \

Simple Control System Pattern £

| =] I Data Flows 2002 IEEE Aerospace Co;;e-féﬁée

UML symbol
for 'component’

<<state variable>>

Flf Camera Temperature
State Variable

State constraint:
Maintain temperature
State in range 275-280°K
values 7

State constraint:
Provide temperature
estimates = 1°K

<<controllers>>

‘ Controller

measurements,
commands|

<<hardware proxy>>

Camera

Hardware Proxy

09/24/2001 Next: Architectural Observations DLD -3

(MDS)

Mission Data System

Architectural Observations

2002 IEEE Aerospace Conferetice

e All users of state knowledge get it from state variables
— one version of the ‘truth’, no private estimations

e Estimation and control are separated
— easier to understand, less chance of error

e Estimators and controllers are both constraint-driven
— temperature controller achieves a specified temperature range
— temperature estimator achieves a specified quality of state knowledge

* These four components interact through shared interfaces

09/24/2001 Next: Shared interfaces DLD -4

Mission Data System (MDS)
g

Shared Interfaces ¢

2002 IEEE Aerospace Conference

<<state variable>>

E% Camera Temperature

UML notation
for 'interface’

State Variable
StateQuery
_<<controller>>
Camera Temperature
Controller

|

|

|
/6 CommandSubmit

MeasurementQuery <<hardware proxy>$

GCamera F P—
Hardware Proxy egene:

direction of call >

09/24/2001 Next: Typical interactions DLD -5

JpL

Typical Interactions

UML éeql}ence diagram

Mission Data Systent (MDS)
;. TN

2002 IEEE Aerospace Conferenée

Component Camera Temperature Temperature Temperature
Scheduler HwProxy Estimator Controller State Variable
[| [[|
| : : | '
| |
| run | | |
l obtain : l =
[measurement [I [
| I I I
' , : : '
l run |
I T P | I
{ : get latest : :
| k measurement | |
| | I
| : update state : N
I I
I I T I I
| run ! I : |
| | | et state value |
| ! ! Z q
: ‘ | command heater on/off |
[l I
I | I I
| send command l | |
: to hardware : : :
I | I I
| | | |
09/24/2001 Next: Entities & relationships

DLD -6

Mission Data Sygtg@'(MDS)

Entities & Relationships

2002 IEEE Aerospace Conferente

Each state var has 1 estimator. 1+ Each state var has 1 controller at most.
Each estimator updates 1-n state vars. StateVariable | 1.." A controller controls 1-n state vars.
A L 7 L
\ evidence 1. 0..” 7
> source 1 !

IntervallicHistory

estimator reader O
1 1.7 0.*

1.* 0..1
generator StateFunction
Controller

pade 1.7 StateValue 1.7 issuer
estimator evidence - input controller

reader controller

evidence controlled
source hardware
T HardwareProxy
- 1.7
evidence 1T % output
O..* ~| DiscreteHistory DiscreteHistory |~ 0.

evidence
09/24/2001 Next: state knowledge DLD -7

Mission Data Systert (MDS)
e —n

‘JI L ' 2002 |IEEE Aerospace Confeliéﬁée

S SRR e R BRIy

State Knowledge
State variables, state functions, state values

09/24/2001 Next: scope of state knowledge DLD -8

State Knowledge Mission Bata Sysiem 02
g)

“Everything you need to know”

2002 IEEE Aerospace Conference

* Dynamics
— Vehicle position & attitude, gimbal angles, wheel rotation, ...
e Environment
— Ephemeris, light level, atmospheric profiles, terrain, ...
* Device status
— Configuration, temperature, operating modes, failure modes, ...
e Parameters
— Mass properties, scale factors, biases, alignments, noise levels, ...
 Resources
— Power & energy, propellant, data storage, bandwidth, ...
e Data product collections
— Science data, measurement sets, ...
e Data Management/Data Transport Policies
— Compression/deletion, transport priority, ...
e Externally controlled factors
— Space link schedule & configuration, ...
e ...andsoon

09/24/2001 Next: true state vs. state estimate DLD -9

Mission Data Systen (MDS)

State Knowledge

wvasssccs

2002 IEEE Aerospace Conference

e “True state” versus “state estimate”

— a physical system has state
e camera temperature, battery voltage, switch position, ...

— can never know states with complete accuracy or certainty
e only a simulator knows state values precisely

— best we can do is estimate the state

— estimates are state knowledge
it is what you know and how well you know it

e State variables provide access to state knowledge
— estimates are the values of state variables
— state variable contains a timeline of past, present, and future
— to get estimate of a particular state, ask its state variable

— “Grand Central Station” in the architecture

* real-time estimation & control, deliberative planning & scheduling
09/24/2001 Next: Evolution of a state variable DLD -10

Mission Data System (MDS)
WW%

Evolution of State Knowledge Design

2002 IEEE Aerospace Conference

.lp

Improvements:
* units (e.g. Kelvin)

“In the beginning ...”

e - telemetry
// camera temperature state var

double cam temp; - remote access

* represent uncertainty
(e.g. mean & variance)

 persistent storage

// update temperature value
cam_temp = funcl();

// use temperature value . 'f h
func2 (cam_temp) ; noti Y LIpOh C Cmge

- access control

+ startup initialization

+ identify by name, for
queries and for goals

* represent value as a
function of time

These factors shaped the
state knowledge package

09/24/2001 Next: timeline DLD-11

Mission Data S

stem (MDS)

State Knowledge Timeline

apL

2002 IEEE Aerospace Confe‘re,rfwlc-":e

A timeline represents Estimated value over time
a state variable’s value is represented in a series
as a function of time of state functions

Acceplable values over time
is represented in state
constraints (from goals)

Future

]

continuous-valued variable

discrete-valued variable time

09/24/2001 Next: Why use a function of time? DLD -12

e,

Mission Data System (MDS)
T —

State as a function of time

e

002 IEEE Aerospace Conference

* Q: Why represent state knowledge history as a function of time?

Isn’t it enough to keep a history of time-stamped samples?

e A;: MDS strives to be true to the underlying physics. A physical
system’s state is a function of time, defined at every instant.

* A, Real-time applications become less sensitive to jitter and cycle-
slip because they can obtain estimates for the current instant of
time, as opposed to some pre-scheduled instant.

— (Cassini uses interpolation functions for this purpose

* Ags: Functions of time can be compressed in a variety of ways that
conserve memory while preserving useful information.

09/24/2001 Next: Adaptation for state value DLD -13

Mission Data System‘(MDS)

2002 lEEE Aerospace Confe‘;ée ce

State Value / Estimate

» Adaptation step 1:
Decide how to represent a state value, including uncertainty, and decide what
kinds of questions it must answer

e Example:
Represent temperature in Kelvin, using mean and standard deviation, with
access to timestamp, mean, and standard deviation

Math::StandardNormalDistribution

Zﬁ i MeanType E

State::StateValueBase J Math::NormalDistribution [o Si::Temperature
JAN
i i
----------- \ |
E ValueType ! | |
State::TimeStampedStateValue LMath: :NormalDistribution<Si::Temperature>

/N
} Adapter specializes template
|

classes (supplied by framework)
TimeStampedStateValue< Math::NormalDistribution< Si::Temperature >> to define a concrete class.

09/24/2001 Next: Collected attributes & operations of state value DLD -14

Mission Data Sygggm”(MDS)

State Value: Inherited Functionality <~

2002 |IEEE Aerospace Conference

JpL

Shows attributes and operations
inherited from framework classes

TimeStampedStateValue< Math::NormalDistribution< Si::Temperature >>

Attributes

- m_timestamp : Tmgt::RTEpoch
- m_mean : Si::Temperature

- m_stddev : Si::Temperature

Normal constructor, given time and temperature
+ TimeStampedStateValue(const RTEpoch& time, const NormalDistribution<Si:: Temperature>& temp)

Accessors for time, mean, standard deviation
+ getTime() : Tmgt::RTEpoch

+ getMean() : Si::-Temperature

+ getStdDev() : Si::-Temperature

Compute probability that temperature is within a given range
+ getProbability(Si:: Temperature low, Si::Temperature high) : double

Serialization and deserialization
+ writeObject(Ser::ObjectOutputStream&) : void
+ TimeStampedStateValue(Ser::ObjectinputStream&)

09/24/2001 Next: Representing uncertainty DLD -15

: Mission Data Syster (MDS
Architectural Note Ission Data VS%'J"“&%)

Representing Uncertainty 5

R

2002 IEEE Aerospace Conference

* An estimate must express uncertainty

e Uncertainty can be represented in many ways

— e.g. enumerated confidence tags, variance in a Gaussian estimate,
probability mass distribution over discrete states, covariance matrix, etc

— framework does not restrict the choices

 No need to expose your internal representation and computations
— pick what you want, hide the details inside your classes

e Only requirement is that your estimate objects be able to answer a
qguestion regarding its certainty

— e.g. “Does the estimate have certainty > ¢ ?”
— e.g. “Is the estimated state within range r with certainty > ¢ ?”

09/24/2001 Next: Adaptation for state function DLD -16

Mission Data Systen (MDS)
S WW

S State Function
AL

2002 IEEE Aerospace Conference

* Adaptation step 2:
Decide how accurately to represent time-varying nature of state value

» Example:
Use a constant function where dynamics are slow relative to estimation rate

Vhis::Timelntervalltem

VAN Adapter specializes template classes
(supplied by framework) to define a
concrete class.

State::StateFunctionBase

I

AN Note that 'ValueType' is bound to the
class defined at bottom of slide 17.
l [
l State::StateFunction K
{_Y?[U_G_T_V_Pe_ i —_l__g ValueType E '
[State::ConstantStateFunction] State::PolynomialStateFunction
A

e S——

ConstantStateFunction< TimeStampedStateValue< Math::NormalDistribution< Si::Temperature >>

09/24/2001 Next: Collected attributes & operations of state function DLD -17

Mission Data Sys;em (MDS)

' State Function: Inherited Functlonallty

2002 IEEE Aerospace Conference

Shows attributes and operations
inherited from framework classes

ConstantStateFunction< TimeStampedStateValue< Math::NormalDistribution< Si::Temperature >>

Attributes

- m_startTime : Tmgt::RTEpoch

- m_stopTime : Tmgt::RTEpoch

- m_stateValue : TimeStampedStateValue< Math::NormalDistribution< Si::Temperature > >

Normal constructor, given time interval and temperature
+ ConstantStateFunction(const RTEpoch& start, const RTEpoch& stop,
const Math::NormalDistribution<Si:: Temperature>& value)

Accessors for time interval and state value
+ getStartTime() : Tmgt::RTEpoch
+ getStopTime() : Tmgt::RTEpoch
+ getState(const RTEpoch& time) :
RefCountP< TimeStampedStateValue< Math::NormalDistribution< Si::Temperature > >

Serialization and deserialization
+ writeObject(Ser::ObjectOutputStream&) : void
+ ConstantStateFunction(Ser::ObjectinputStream&)

09/24/2001 Next: Time Derivatives DLD -18

Architectural Note Mission Data Sygtem (MDS)

Representing Time Derivatives &

2002 IEEE Aerospace Confeféﬁ_ce

In MDS, time derivatives of state variable x are represented

in that same state variable

Physics:

A state refers to a physical quantity in a system
A state value is an instantaneous description of system
Position and velocity are separate states

Not all time derivatives are states; acceleration not usually a state because
energy is not a function of acceleration

MDS:

09/24/2001

Because MDS maintains a history of how state changes as a function of
time, derivatives are implicit, not explicit

Can derive velocity from a history of position, so it would be redundant to
have separate state variables for position and velocity

An adapter might explicitly represent both position and velocity inside a
state function, but would then have to ensure consistency between them

Next: Adaptation for state variable DLD -19

Mission Data Systeni (MDS)

State Variable

JPL

2002 IEEE Aerospace Confel;éﬁ"ée

* Adaptation step 3:
Define a state variable to hold state knowledge and provide access to it
* Example:

Specify a camera temperature state variable that holds instances of the
temperature state functions defined earlier

Concept Adaptation
___ 1 traits |

State Variable T
State::BasisStateVar]
I ?
[Intervallic History \ LVhis::lntervallicHistory
n

State Function ConstantStateFunction< TimeStampedStateValue
< Math::NormalDistribution< Si::Temperature >>

—

|—4;' Vi
State Value TimeStampedStateValue< Math::NormalDistribution< Si:: Temperature >>

09/24/2001 Next: 3 kinds of state variables DLD -20

Mission Data Systen (MDS)

_,p 3 Kinds of State Variables

2002 IEEE Aerospace Confe

» basis state variable is locally estimated, near sources of evidence and
ability to interpret that evidence

* proxy state variable provides remote, read-only, time-delayed access
to value history of a basis state variable

UML notation
for deployments

data transport

f'%é

e derived state variable computes a function of 2 or more state vars
— Example: the difference between spacecraft altitude and planet surface

09/24/2001 Next: state variable interfaces DLD -21

JpL

State Variable Interfaces

2002 IEEE Aerospace Conference

PolymorphicStateQuerylinterface
—

StateQuerylinterface

l

GenericViewlnterface

ConstraintExecutionlnterface

PrivilegedStateAccessinterface

MultiQuerylnterfac

®

PolicyControllerinterface

StateUpdatelnterface

Legend:
direction of call
—

O‘ StateVariable

T

1 N 1
i traits

StateVar -----1 !

| BasisStateVar

Next: State query interface

Different interfaces
serve different needs
of different clients

ConstraintExecutioninterface

(to controller)

IntervallicHistory

——}O StateNotificationInterface
#

ConstraintExecutioninterface

(to estimator)

DLD -22

Mission Data System (MDS)

e

2002 IEEE Aerospace Conference

Purpose: Provide type-safe operations for obtaining state
values from any kind of state variable

Architectural rule: Queries to this interface must return
“unknown" until the state variable is unlocked

Notes:
* Operation 'getState’ returns a smart pointer to a heap-
allocated state value object; it's general and safe

» Other operations having different speed/memory/safety
tradeoffs will be added

«interface» e H
StateQuerylinterface

+ getState (const RTEpoché&): RefCountP<const StateValueFamilyType>

Italicized names denote
abstract operations
(pure virtual functions)

09/24/2001 Next: “familty type” DLD -23

Mission Data System (MDS)

2002 IEEE Aerospace Conference

» StateQueryInterface can return more than one type of object
because of value history summarization/compression

» These types are organized as members of the same family

Temperature example: | StateValueBase

[.
LTemperatureStateVaIueFamlIyType
/\

TemperatureStateVaIueHighFideIityl D‘emperatureStateValueLowFideIity

TemperatureUnknown

Lower-fidelity repreéen‘raﬁon:

uniform distribution (lower &
upper bounds)

High-fidelity represem‘aﬁori: ‘
normal distribution (mean &
standard deviation)

This state value type generated
directly by estimator

~ This state value type results
from value history compression

L

09/24/2001 Next: state update interface

.

~ Unknown temperature:

represented with a distinct
data type so it can't be

accidentally misinterpreted

A required family member

DLD -24

Mission Data Sy%t,em‘ (MDS)

StateUpdatelnterface

JPL

2002 IEEE Aerospace Confer

Purpose: Provide type-safe operations for startup initialization
and routine update of value history

Architectural rule: This interface exists for exclusive use of
exactly one state estimator/generator

Notes:

» value history initially locked against queries

- estimator has responsibility to:
— selectively recover data from data catalog
— examine/repair recovered data
— unlock value history for queries

«interfface» el
StateUpdateinterface

+ recoverState (const RTEpoch&, const RTEpoch&): void

+ getStateNL (const RTEpoch&): RefCountP<const StateValueFamily Type>

+ getStateFunctionNL (const RTEpoch&): RefCountP<const StateFunctionType>
+ updateState (const StateFunctionType&): void

+ unlockState (): void

09/24/2001 Next: State notification interface DLD -25

09/24/2001

Purpose: Enables interested listeners to be notified when a
state variable’s value has been updated

Design Pattern: This interface supports the '‘Observer
design pattern for data-driven/event-driven reactions

Notes:

* The state variable calls this interface; it doesn't provide it

» BasisStateVar calls this during 'updateState’ operation

* ProxyStateVar calls this upon receipt of new data from
data transport service

* Notification includes identity of state variable and vector
of changed history items

«interface»
StateNotificationinterface

+ changed (const Cmp.:RefCountComponentinstance monitoredStateVar,
Dm::Vhis::ValueHistory::ltemVectorRef changedltems) : void

Next: Policy controller interface

DLD -26

Mission Data System (

PolicyControllerinterface

y o

MDS)

2002 IEEE Aerospace Conferénce

Purpose: Provides operations for setting/changing data
management policies on a value history

Architectural rule: All value history-containing components
must implement this interface

Notes: Data management policies control:
* when to checkpoint

* what to transport

* when to compress

* how much to recover upon startup

«interface»
PolicyControllerinterface

+ setPolicy (const HistoryPolicy& policy) : void

+ replacePolicy (const HistoryPolicy& policy) : void

+ revokePolicy (const Pol.:PolicyActuator::PolicylD Typeé& policylD) : void
+ getPolicy (const Pol::PolicyActuator::PolicylDType& policyID) : const HistoryPolicy&

09/24/2001 Next: Privileged state access interface DLD -27

Mission Data Systen'f (MDS)

2002 IEEE Aerospace Confere

Purpose: Provide type-safe read-only access to the raw state
functions contained in value history (as opposed to state values)

Notes:
* In general, state functions are not exposed to clients because

their data representations are implementation choices
* Use of this interface is restricted to special cases
- Usage becomes an inspection item

«interface» heeo-
PrivilegedStateAccesslinterface

+ getStateFunction (const RTEpoch& time) : RefCountP<const StateFunctionType>

09/24/2001 Next: Constraint execution interface DLD -28

Mission Data System (MDS)

ConstraintExecutioninterface

2002 IEEE Aerospace Confer

JPL

Purpose: Provide operations for starting execution of a state
constraint when achiever(s) ready

Notes:

* These operations are forwarded through state variable to its

achievers: estimator (if present) and controller (if present)
- Hence, state variable both provides and reguires this interface

- Achiever determines readiness via combination of state
constraint, state knowledge, and control model

«interface» . eeeme-
ConstraintExecutioninterface

+ isReadyToStart (RefCountP<const StateConstraint>) : bool
+ startConstraint(RefCountP<const StateConstraint>) : void

09/24/2001 Next: Other query interfaces DLD -29

Mission Data Systent (MDS
- A

2002 IEEE Aerospace Conference

09/24/2001

Provides a polymorphic query of a state variable's value, where the
caller doesn't need to know the state value data type. Similar to
StateQueryInterface but returns a base type for state value.

«interface»
PolymorphicQueryinterface

+ getPolyState (const RTEpoché& time) : RefCountP<StateValueBase>

MultiQueryInterface:

Provides polymorphic access to state functions to support queries
of 'ground’ and ‘simulation’ deployments by human operators. Not
present in ‘flight' deployments.

«interface»
MultiQueryinterface

+ getltemsinRange (const RTEpoch& start, const RTEpoché& stop) :
RefCountP<const RefCountAdapter<const std::vector<ltemRef>>>

Next: Estimators & Controllers DLD -30

